skip to main content


Search for: All records

Creators/Authors contains: "Williams, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Phenology is a key biological trait of an organism’s success and is one of the best indicators of its response to recent climate change. Plants are among the most well-studied organisms in this regard, but observational data bearing on this topic are largely restricted to woody species of the northern hemisphere, mostly from ca. the last three decades. Recent research has demonstrated that mobilized online herbarium specimens provide important, albeit mostly neglected, information on plant phenology. Here, we use the web tool CrowdCurio to crowdsource phenological data from more than 10,000 herbarium specimens representing 30 flowering plant species broadly distributed across the eastern United States. Our results, spanning 120 years and generated from over 2,000 crowdsourcers, clarify numerous aspects of plant phenology. First, they reveal that plant reproductive phenology is significantly advancing in response to warming, which is consistent with previous studies. Second, among those species with broad latitudinal ranges, populations from more southern latitudes are significantly more phenologically sensitive to temperature than those from northern populations. Last, contrary to some recent findings, plants in warmer, less variable climates may be much more dynamic, on average, in their phenological sensitivity. Our results are robust to a variety of confounding factors and span large phylogenetic distances and myriad life histories. These may represent more global trends in the latitudinal gradient of phenological response with myriad potential ecological and evolutionary consequences, and leads us to hypothesize that phenological sensitivity across species' ranges is driven by adaptation to local climates. 
    more » « less